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Abstract

Latent class analysis (LCA), although minimally applied to the statistical analysis of mixtures, 

may serve as a useful tool for identifying individuals with shared real-life profiles of chemical 

exposures. Knowledge of these groupings and their risk of adverse outcomes has the potential to 

inform targeted public health prevention strategies. This example applies LCA to identify clusters 

of pregnant women from a case-control study within the LIFECODES birth cohort with shared 

exposure patterns across a panel of urinary phthalate metabolites and parabens, and to evaluate the 

association between cluster membership and urinary oxidative stress biomarkers. LCA identified 

individuals with: “low exposure,” “low phthalates, high parabens,” “high phthalates, low 

parabens,” and “high exposure.” Class membership was associated with several demographic 

characteristics. Compared to “low exposure,” women classified as having “high exposure” have 

elevated urinary concentrations of the oxidative stress biomarkers 8-hydroxydeoxyguanosine (19% 

higher, 95% confidence interval [CI]=7%, 32%) and 8-isoprostane (31%, 95% CI=−5%, 64%). 
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However, contrast examinations indicated that associations between oxidative stress biomarkers 

and “high exposure” were not statistically different from those with “high phthalates, low 

parabens” suggesting a minimal effect of higher paraben exposure in the presence of high 

phthalates. The presented example offers verification through application to an additional data set 

as well as a comparison to another unsupervised clustering approach, k-means clustering. LCA 

may be more easily implemented, more consistent, and more able to provide interpretable output.
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1. Introduction

Human-made chemical exposures, xenobiotics, in isolation and in combination have the 

potential to impact health (1). However, estimating the health impacts of chemical exposure 

mixtures is complicated by the typically highly correlated nature of chemicals that exist 

together in an environment of interest, e.g., the body, atmosphere, etc. Several statistical 

approaches have gained ground in recent years as a way to understand various questions 

pertaining to how mixtures impact human health (1). The selection of the best statistical 

method is inextricable from the research question. Some specific aims of mixtures research 

include: detection of important chemical-outcome relationships within a mixture; estimation 

of cumulative effects; identification of joint effects, such as interactions between chemicals; 

and exposure profile characterization (2). Our primary question here is: can we identify 

groups of individuals based on similar exposures to chemicals? We posit that answering this 

question may have strong public health relevance for three reasons. First, it enables 

identification of exposure combinations within individuals that occur in reality rather than in 

theory. Second, it allows for estimation of elevated risk among a group of individuals that 

may be related to a number of factors, including combinations of chemical exposures as well 

as certain vulnerabilities within that group. Third, because we are understanding the risk of a 

known group rather than an unknown individual, this information could be used to develop 

targeted, impactful interventions.

Latent class analysis (LCA) identifies groups of individuals with shared, real-world, 

exposure profiles (3), but has been applied minimally in environmental epidemiology and 

never in studies of endocrine disruptors in pregnant women (4). The primary aim in this 

study was to apply LCA to identify latent classes (i.e., clusters) of pregnant women who 

share similar patterns of phthalate and phenol exposure biomarkers. We test the 

reproducibility of latent class groupings using data on pregnant women from the National 

Health and Nutrition Examination Survey (NHANES) from the same time frame as the 

current study. Additionally, we compared the results from LCA with those from another 

clustering approach, k-means clustering (5, 6), which has been used more commonly as a 

chemical mixtures approach and offers a similar interpretation through the clustering of 

individuals but allows for continuous rather than categorical exposures. As a secondary aim, 

we examine the association between membership in the latent classes and two urinary 
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oxidative stress biomarkers, which we previously found to be associated with these 

chemicals in single-pollutant analyses (7, 8).

2. Methods

2.1. Study population

The LIFECODES birth cohort is an on-going prospective cohort study that was first 

designed to identify risk factors for preeclampsia (9). Women who are planning to deliver at 

Brigham and Women’s Hospital in Boston, Massachusetts, USA are enrolled and consented 

at <15 weeks gestation then participate in four study visits at median 10, 18, 26, and 35 

weeks of gestation. At the first visit, participants complete a questionnaire providing 

demographic information, tobacco and alcohol use, and information on medical history. At 

each study visit, participants provide urine as well as blood samples. The present analysis 

utilizes a subset of individuals from this study population who delivered between 2006 and 

2008 and were part of a case-control study designed to examine the relationship between 

environmental phthalate exposure and preterm birth (10). In that study, we selected 130 

cases of preterm birth (delivery <37 weeks of gestation) from participants who delivered 

within that time frame as well as 352 random (i.e., unmatched) controls. To be included in 

the present analysis, participants needed at least one available measure for all chemicals of 

interest; as such, 4% (n=15) of controls were removed and 5% (n=7) of cases were removed. 

This resulted in a final sample size of 460 (n=123 cases of preterm birth, n=337 unmatched 

controls). Unless otherwise specified, analyses were inverse probability weighted using case-

control sampling fractions so that the results are representative of the overall LIFECODES 

study population. Self-reported maternal age, pre-pregnancy body mass index (BMI), race/

ethnicity, and education were available as covariates.

2.2. Exposure biomarkers

All urinary phthalate metabolites and phenols were analyzed in participants from the case-

control study by NSF International (Ann Arbor, MI, USA) using methods described in detail 

elsewhere (10, 11). The exposures for this analysis were selected based on their availability 

and consistent measurement above the limit of detection (>50%). We included the following 

urinary phthalate metabolites: di-2-ethylhexyl phthalate (DEHP), mono(3-carboxypropyl) 

phthalate (MCPP), mono-benzyl phthalate (MBzP), mono-n-butyl phthalate (MBP), mono-

isobutyl phthalate (MiBP), and mono-ethyl phthalate (MEP). Urinary phenols included: 2,4- 

and 2,5-dichlorophenols (2,4-DCP and 2,5-DCP), triclosan (TCS), benzophenone-3 (BP3), 

bisphenol-A (BPA), butyl paraben (BPB), ethyl paraben (EPB), methyl paraben (MPB), 

propyl paraben (PPB). Bisphenol-S and triclocarban were available but not included due to 

low detection rates (46.6% and 15.4%, respectively). For the present analyses, all chemicals 

were specific-gravity corrected and the exposures were the geometric means of available 

measurements across visits 1, 2, and 3 in pregnancy (median 10, 18, and 26 weeks of 

gestation). In other words, for a participant with only one measurement, the average measure 

would be equal to that measurement; for a participant with two measurements, the average 

measure would be equal to the geometric mean of those two measures, etc. There was equal 

representation of cases as well as controls at each of these three study visits (12).
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2.3. Oxidative stress biomarkers

Oxidative stress is considered a mediator between exposures and an array of health end 

points, including adverse birth outcomes. The urinary oxidative stress biomarkers 8-

hydroxydeoxyguanosine (8-OHdG) and 8-isoprostane were measured in all available urine 

samples using enzyme immunoassay by Cayman Chemical (Ann Arbor, MI, USA) (8). As 

with the exposure biomarkers, we used the geometric means of specific-gravity corrected 

oxidative stress marker measurements across visits 1-3.

2.4. Statistical analysis

To assess correlation between urinary phthalate metabolites and phenols, we first created a 

Pearson correlation heat map of associations between subject-specific geometric averages 

using the package “corrplot” in R (13).

2.4.1. Latent class analysis—To address our primary aim, we applied LCA using the 

R package “poLCA” (14). Accompanying code for this example is available at GitHub 

repository “LCAmix” from user “carrollrm.” We used an unsupervised LCA approach, 

meaning that the outcome of interest was not considered when making class assignments, 

because the primary aim was to identify meaningful exposure profiles and not to estimate 

exposure-outcome associations (15). Further,the classes were defined using only controls to 

minimize potential bias associated with the case-control study design.

We dichotomized each pregnancy-specific average exposure measure into below versus 

above the median, using the median measure among the controls only, to indicate “low” 

versus “high exposure” for each of the M chemicals described in Section 2.2. In this method, 

we prespecify to use K classes for describing the exposure profile of the n individuals such 

that πk describes the proportion of individuals in class k (k = 1,…,K). Each class represents 

a different exposure profile based on m = 1,2,…,M chemicals, and the proportion of 

individuals with high (or low) exposure to chemical m in class k is pmk (or 1 — pmk). The 

representation of each chemical in the K latent categories can be summarized in a 

contingency table of size M × K. From these definitions, it follows that Nπkpmk represents 

the resulting number of individuals in class k with relatively high exposure to chemical m.

The class assignments were estimated by maximizing a multinomial log likelihood (see 

supplemental material) using an expectation-maximization (EM) algorithm. We determined 

the appropriate number of classes by performing the LCA for k = 2 to 10 classes and 

comparing several goodness-of-fit statistics, including Akaike information criterion (AIC) 

and Bayesian information criterion (BIC), which are considered the most appropriate for 

basic LCA models because of simplicity and the use of penalty terms for the number of 

parameters (16, 17). However, we also considered interpretability as an important deciding 

factor in determining the ideal number of classes.

Once the best choice for the number of classes, K, was determined from the controls-only 

data, a mean overall exposure was calculated across all M chemicals via ∑m = 1
M pmk /M for 

each of the K classes. This value represents the mean proportion of individuals with greater 

than the median biomarker concentrations across all chemicals for latent class k. Classes 
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were ordered by lowest to highest mean overall exposure value for presentation. Class 

membership was assigned to each participant based on their highest class membership 

probability, where a higher probability indicated a higher chance of being assigned to the 

given class. Posterior, i.e., following the completion of the EM algorithm, class membership 

probabilities indicating individual-level certainty of class assignment are also calculated 

(15).

Finally, we generated class assignments for the cases in the LIFECODES data set with the K 
class LCA model for further examination. As a first step, we examined demographic 

characteristics of individuals within each latent class and tested for differences across groups 

using independent chi-squared tests.

2.4.2. Latent class associations with oxidative stress—To address our secondary 

aim, we examined the association between latent class membership and urinary oxidative 

stress biomarkers using linear regression models with each of the log-transformed urinary 

oxidative stress biomarkers as the outcome in separate models and a variable for latent class 

assignment as the predictor. We first used the latent class with the lowest mean overall 

exposure as the reference group, and subsequently changed the reference category in order 

to calculate all contrasts. All covariates examined in relation to latent classes are included as 

covariates in the models in order to replicate results from previously published single-

pollutant models.

2.4.3. Reproducibility of latent classes—We were additionally interested in whether 

the latent classes identified in the LIFECODES study were present in other populations, 

after accounting for differences in demographic characteristics (i.e., whether the exposure 

patterns are consistent across populations). To assess this, we created covariate-adjusted 

LCA models based on: 1) controls from the LIFECODES population; and 2) pregnant 

women from NHANES (2005-2006 and 2007-2008 cycles). We then assigned class 

membership to each individual from NHANES based on each model and compared chemical 

exposure distributions and class membership. We restricted the NHANES dataset to the 134 

pregnant women who had urinary concentrations of phthalate metabolites and phenols 

available and used created creatinine-corrected concentrations for analysis. Urine collection 

methods and laboratory analysis for NHANES are described in detail elsewhere (18, 19).

Covariate-adjusted LCA was necessary because of the strong associations between 

demographic characteristics and class membership, and because NHANES data collection 

entails a complex survey design involving oversampling of underrepresented populations for 

precise estimates within those groups. Covariates were selected based on those 

characteristics that were accounted for in the NHANES sampling strategy (20) and were also 

available in the LIFECODES dataset: age; education level (to reflect socioeconomic status); 

and race/ethnicity. For both LCA models, the number of latent classes is forced to be the 

same as in the non-covariate-adjusted LIFECODES LCA model.

2.4.4. Comparison of latent class analysis with k-means clustering—Because 

k-means clustering has been used more commonly as a chemical mixtures approach, we 

wanted to compare the classes generated through this method, both in terms of number as 
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well as interpretability. K-means clustering is an alternative unsupervised clustering 

approach that has been implemented to address mixtures questions using air pollution and 

exposure biomarker data (5, 6). Whereas LCA utilizes categorical exposures or predictors 

and maximizes the multinomial likelihood, k-means clustering uses continuous exposures 

and minimizes the sum of squared-Euclidian distances across possible clusterings, given K 
(21, 22). We applied the classic k-means algorithm of McQueen (21). K-means clustering 

proceeds by randomly selecting K points (called centroids) within the range of the exposures 

(e.g., a centroid in the LIFECODES data would have values for each of the M chemicals) 

and assigning each point to a cluster with the centroid that has the smallest distance to the 

point. Centroid locations are recalculated based on the cluster mean, and this process is 

iterated until convergence under many (300) random sets of starting locations. This analysis 

was performed using functions from the “flexclust” package in R (23).

In addition to comparing the number and interpretability of the classes using these two 

approaches, we also examined the differences in the class membership associations with 

oxidative stress biomarkers when the number of classes was forced to be the same as what 

we observed in LCA. We then proceeded with regression analysis of the covariate-adjusted 

association between the k-means clusters and urinary oxidative stress biomarkers using an 

approach identical to that described in the LCA analysis.

2.4.5. Code availability—Accompanying code for the LCA methods is available at 

GitHub repository “LCAmix” from user “carrollrm” This is available as an R markdown file 

to lead viewers through a simple example of performing these methods.

3. Results

Distributions of the phenols and urinary phthalate metabolites considered here were similar 

to what has been observed in the general US population (9, 10). Figure 1 displays a heat map 

of the Pearson correlations between chemical averages. Urinary phthalate metabolites and 

phenols analyzed were moderately to highly correlated (range: −0.09 to 0.98), with the 

highest correlations being between: 2,4-DCP and 2,5-DCP at 0.98; MPB and PPB at 0.63; 

and MBP and MCPP at 0.54. Correlations within phthalate metabolites and within phenols 

were greater in magnitude than across the two chemical classes.

3.1. Latent class analysis

To determine the number of latent classes within our dataset, we compared goodness—of-fit 

measures for models with 2-10 latent classes (Supplemental Table 1). Results varied based 

on the criteria used for selecting the optimal number of classes. We selected our final model 

with four latent classes because that choice of K produced the lowest BIC because this 

number of classes was more interpretable, as compared to 10 latent classes identified as best 

based on AIC. Classes were ordered from low to high mean overall exposure and all pmk 

proportion estimates are shown in Figure 2. Each bar displays the proportion of individuals 

with high (above median, dark gray) or low (below median, light gray) exposure biomarker 

concentrations for each chemical within each latent class.

Carroll et al. Page 6

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the n=377 controls, the first latent class (n=72, “low exposure” group) contained mostly 

individuals who had lower than median biomarker concentrations across all chemicals (mean 

of 26% with “high exposure” across all biomarkers). The second latent class (n=93, “low 

phthalates, high parabens”) and was made up of individuals with lower than median 

concentrations of phthalate metabolites, BPA, and dichlorophenols, but higher than median 

concentrations of phenols found commonly in personal care products including parabens and 

BP3 (mean of 48% with “high exposure” across all biomarkers). The third latent class 

(n=79, “high phthalates, low parabens”) comprised individuals with greater than median 

concentrations of all phthalates, dichlorophenols, and BPA, but below median concentrations 

of parabens and BP3 (mean of 51% with “high exposure” across all biomarkers). Note that 

TCS levels were similar in “low phthalates, high parabens” group and the “high phthalates, 

low parabens” group, where approximately half of the women had greater than the median 

urinary concentrations in each class. The fourth and final latent class (n=93, “high 

exposure”) contained individuals with higher than the median biomarker concentrations for 

most of the phthalate metabolites and phenols measured, with the exception of BP3. This 

group had the highest mean percentage of individuals with “high exposure” across all 

biomarkers (71%). Posterior class membership probabilities were high (median 95%, 

interquartile range: 81%, 99%) indicating that women had a high probability of belonging to 

the class to which they were assigned (histogram of probabilities shown in Supplemental 

Figure 1).

Next, we assigned class membership to all cases as well as controls in the LIFECODES 

population and assessed the associations between latent class assignment and the covariates 

of interest for all women in the LIFECODES data set. Table 1 displays distributions and chi 

square test results for differences in latent class assignment by each level of demographic 

characteristic. The “low exposure” group contained more women who were White (70% vs. 

59% overall) and who had a college degree or higher (47% vs. 40% overall). In contrast, the 

“high exposure” group had a higher percentage of Black and Other race participants (34% 

and 36%, respectively, vs. 16% and 25% overall) and more participants in the lower age 

groups. The “low phthalates, high parabens” group appeared to include older individuals as 

well as individuals with higher education and lower BMI. Individuals in the “high 

phthalates, low parabens” group were more likely to be classified as Other race when 

comparing to the overall study population. Chi squared tests indicated significant differences 

in all characteristics across classes.

3.2. Latent class associations with oxidative stress

Compared to those in the “low exposure” group, individuals in the “high phthalate, low 

parabens” group and those in the “high exposure” group had elevated urinary concentrations 

of both 8-isoprostane and 8-OHdG (Table 2). However, individuals in the “low phthalate, 

high parabens” group did not have statistically different levels of either biomarker. When the 

reference group was changed to examine additional contrasts, we observed that there was 

only a modest difference in oxidative stress biomarker concentrations in the “high exposure” 

group compared to the “high phthalate, low paraben” group, suggesting minimal influence 

of the parabens on the associations in the presence of high phthalates.
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3.3. Reproducibility of latent classes

Among pregnant women from the NHANES population, the Pearson correlation matrix for 

chemicals analyzed in this study illustrated similarities to what we observed in the 

LIFECODES study sample (Supplemental Figure 2). In this population we also observed the 

highest correlation between 2,4-DCP and 2,5-DCP at 0.97, and the correlation between 

MPB and PPB also remained the second highest at 0.71.

Latent class assignments for NHANES participants based on covariate-adjusted LCA 

models from LIFECODES and NHANES data showed somewhat similar patterns 

(Supplemental Figures 3 and 4, respectively), and posterior class membership probabilities 

for both were very certain (median 99% certainty, interquartile range 95%-100%). Latent 

class 1 was designated as “low exposure” in the LIFECODES model, although the most 

similar class created from NHANES data was not very low (i.e., had a higher mean 

proportion of participants with above median exposure across all biomarkers, 43% 

[NHANES] vs. 26% [LIFECODES]). This class was the least consistent between the two 

models. Latent classes 2 and 3 exhibited “low phthalates, high parabens” and “high 

phthalates, low parabens” respectively and consistently across the two models. However, the 

“high phthalates, low parabens” class did show some differences with lower measures for 

MBP, MEP, and the dichlorophenols in individuals classified with the NHANES LCA model 

compared to the LIFECODES LCA model. Latent class 4 was clearly “high exposure” in 

classes from both models (mean of 67% and 70% of participants with above median 

exposure across all biomarkers for NHANES and LIFECODES, respectively). The cross 

tabulation comparing class membership based on the two different LCA models showed 

moderate agreement, with 59% (n=9+24+22+24=79) of women assigned to the same three 

corresponding classes (Cohen’s Kappa, which quantifies the agreement between two 

classification schemes, of 0.46 for measuring the agreement not due to chance where 

random agreement is κ = 0.0 and perfect agreement is κ = 1.0) (Supplemental Table 2).

3.4. Comparison of LCA with k-means clustering

In the LIFECODES data, the adjusted Rand index was highest for K = 3, indicating that k-

means clustering was most stable at a lower number of clusters. The distributions of 

exposures in these clusters could roughly be categorized as “low”, “moderate”, and “high” 

for all exposures, which has less interpretability compared to the classes identified by LCA 

(Supplemental Table 3).

For comparison of associations between class membership and oxidative stress biomarkers 

with LCA, we took K = 4 to mirror the same number of clusters, so that we could identify if 

additional information harnessed from the continuous exposure measures in k-means 

clustering improved the ability to detect effects. K-means clusters yielded groupings with 

similar interpretation to those from the LCA analysis (Supplemental Table 4). Thus, we also 

refer to the k-means clusters as “low exposure”, “low phthalates, high phenols”, “high 

phthalates, low phenols”, and “high exposure” in order to facilitate interpretation. While the 

k-means clusters demonstrated similar characteristics to those generated from LCA with 

respect to levels of exposures, there were notable discrepancies among how individuals were 

grouped in each approach. For example, the “low exposure” group from k-means clustering 
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comprised a nearly equal split between the “low exposure” and “low phthalates, high 

parabens” LCA classes (Supplemental Table 5). Cohen’s Kappa is estimated as κ = 0.43 

suggesting that the two classification schemes yield moderate agreement (24).

Patterns of adjusted log-linear regression model coefficients for the two urinary oxidative 

stress biomarkers were similar for the 4 k-means clusters and the LCA classes, suggesting 

the two groupings identify similar patterns as predictors of our chosen urinary oxidative 

stress biomarkers. Point estimates contrasting results for the estimated percent change in 8-

OHdG for a change in exposure group were similar between k-means clusters and LCA. 

However, with k-means clustering they were approximately twice as large when estimating 

the adjusted percent increase in 8-isoprostane, compared to those based on LCA. Contrasted 

with the “low exposure group,” the percent increase (95% CI) in 8-isoprostane was 8 (−12, 

34), 21 (−3, 51), and 31 (5,64) for “low phthalates, high parabens”, “high phthalates, low 

parabens”, and “high exposure” groups respectively (Table 3). This latter result suggests that 

the k-means clusters were more highly associated with 8-isoprostane.

Finally, a likelihood ratio test was performed to contrast regression models with and without 

latent class cluster or k-means cluster (i.e., does exposure cluster improve model fit over a 

model that includes only covariates). For the latent class analysis, cluster variables improved 

model fit in the regression for 8-OHdG but not 8-isoprostane (AIC: 371.3 [unadjusted] vs. 

362.1 [adjusted] and 1085.9 (unadjusted) vs. 1086.9 (adjusted), respectively; likelihood ratio 

Chi-square p-values: <0.01 and 0.17, respectively), whereas fit improved for both models 

with the k-means analysis (AIC: 371.3 [unadjusted] vs. 368.2 [adjusted] and 1085.9 

[unadjusted] vs. 1076.0 [adjusted], respectively; likelihood ratio Chi-square p-values: 0.03 

and <0.01, respectively). Thus, LCA produced clusters that appeared to be more relevant to 

8-OHdG while k-means clustering appeared to be more relevant to 8-isoprostane.

4. Discussion

To add to the conversation on how to disentangle and summarize the effects of 

environmental chemical exposures on human health, we presented an example of the 

application of latent class analysis to identify groups of individuals with similar exposure 

profiles. We identified four groups of pregnant women from within the LIFECODES cohort 

with distinct patterns of exposure to phthalates and phenols in pregnancy. Individuals in 

these classes had somewhat different demographic characteristics, and individuals in the 

“high phthalates, low parabens” as well as the “high exposure” groups had significantly 

elevated urinary concentrations of the oxidative stress biomarkers 8-OHdG and 8-

isoprostane compared to individuals in the “low exposure” group. We additionally observed 

similarities in latent classes in the LIFECODES study population compared to pregnant 

women from NHANES during the same time period. Finally, in a comparison of LCA to k-

means clustering, we found that k-means selected a smaller number of clusters with less 

informative groupings, i.e., “low exposure”, “moderate exposure”, and “high exposure”, 

which provided little interpretable information about exposure-outcome associations. 

However, when k-means was forced to select the same number of clusters chosen by LCA, 

cluster membership was more strongly associated with 8-isoprostane.
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The substantive interpretation of these findings is that pregnant women with “high exposure” 

to phthalates, but not phenols, have higher oxidative stress levels. Among pregnant women 

with high exposure to both phthalates and phenols, oxidative stress levels were not higher 

compared to pregnant women with high exposure to phthalates alone. While we found no 

evidence for interaction, we acknowledge that the absence of such an effect cannot be tested 

statistically in LCA. However, if we observed evidence for such an interaction, e.g., if 

pregnant women with high exposure to phthalates and phenols had much higher oxidative 

stress levels than pregnant women with “high exposure” to just one class of chemicals, 

formal interaction testing between compounds in the overall population could be a 

subsequent analytic step.

These results were consistent with what has previously been observed in this study 

population using single-pollutant models and adaptive elastic net, where the overall 

conclusions were that the associations between phthalate exposure and oxidative stress 

appeared to outweigh any associations observed among phenols (8, 25). It should be noted 

that these associations are not directly comparable since these are markedly different 

statistical approaches. However, in the study of mixtures, it could be valuable to examine the 

same question using different statistical methods to confirm findings.

Our secondary analysis examining reproducibility of latent class assignment using LCA 

models from the LIFECODES and NHANES datasets showed that there was some overlap 

in latent class assignment for nearly half of the individuals in NHANES. Differences in I 

demographic characteristics, behavioral patterns, method for urine dilution adjustment (i.e., 

creatinine vs. specific gravity), and exposure sources across place and time may explain the 

lack of reproducibility in class membership. It is unlikely that differences in individual 

exposure distributions in the two populations explain these differences since they were 

relatively similar. We posit that, even if they are not perfectly reproducible, the classes 

identified in a unique study population are important because they are accurate 

characterizations of distributions within that population and may extend to other similar 

populations to provide information on potentially biologically- or behaviorally-relevant 

combinations of exposures that could then be explored further. Moreover, within the 

population examined, identification of demographic characteristics or behavioral patterns 

associated with exposure could inform targeted and impactful exposure prevention 

strategies.

This study is one of the first to examine latent class models for chemical mixtures analysis. 

Previously, Hendryx and Luo used a similar approach to identify latent classes of children 

with shared exposure profiles in NHANES data (26) and identified individuals with low, 

medium, and high levels of exposure to various chemicals (including metals, pesticides, 

phthalates, phenols, and polycyclic aromatic hydrocarbons). Other clustering methods have 

also been applied in this context, including classification and regression trees (CART), 

Bayesian profile regression (BPR), and k-means clustering (27–29). CART and BPR are 

supervised methods which attempt to optimize prediction of an outcome. Using a latent 

class-based supervised approach was also a possibility; however, our primary objective was 

to identify groups of individuals with unique exposure patterns and to subsequently identify 

associations between those groups and oxidative stress. Clustering based on the outcome 
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using a supervised approach could be useful for prediction but less informative for public 

health with respect to identifying exposure profiles that could correspond to behavioral 

patterns.

K-means clustering allows for use of continuous rather than categorical variables with 

output—class assignment by exposure profiles—that is similar to LCA. In our secondary 

analysis comparing k-means clusters to latent classes, we observed that k-means selected 

fewer clusters that generally reflect “low,” “moderate,” and “high exposure” individuals. 

These groupings provided little information that could be used for understanding of 

exposure-response, interaction, or that could be subsequently used for behavioral 

interventions. Furthermore, other studies using k-means clustering, especially with chemical 

exposure biomarkers, although notably not in air pollution studies, appeared to similarly 

identify only 1-2 groups (e.g., “low,” “high” or “low,” “moderate,” “high”) (5, 30–32). 

While it is not a given that LCA will identify more and as easily interpretable groups every 

time, this approach should at the very least be considered alongside k-means.

Additionally, we observed better than random agreement across k-means clusters and LCA 

classes, though it was disparate enough to suggest that the two approaches utilized 

somewhat different characteristics of the data by which to create groupings. While we were 

able to identify some similarities between the k-means clusters and the LCA classes (indeed, 

we gave the groups similar labels across the two schemes), the k-means groups were less 

obviously distinguishable from each other based on chemical class groupings than were the 

LCA classes. Overall, the k-means approach was superior for predicting levels of 8-

isoprostane when the number of clusters is forced to the number identified by LCA; 

however, used alone, k-means appeared to favor fewer classes that do not align with 

chemical classifications.

Results from LCA cannot be directly compared to other chemical mixtures analyses that 

address different research questions. However, a major strength of LCA and clustering 

approaches generally is we are examining comparisons between groups of individuals with 

real-world exposure profiles. Other mixtures examples with the aim of quantifying 

cumulative or joint effects of chemical mixtures make such interpretations when, in reality, it 

is not appropriate because of the statistical method employed. For example, Snowden 

demonstrated such a problem with approaches relying on estimating single-chemical effects 

of some exposures while holding others constant (such as multiple regression or “univariate 

response function” results from Bayesian Kernel Machine Regression) to mixtures where we 

estimate the difference in outcome per IQR change in one exposure while holding the others 

constant (33). While LCA does not allow for disentangling independent effects of individual 

exposures or estimating the extent of interaction between exposures, if clusters correspond to 

distinct combinations of exposures (as in our analysis), then LCA allows qualitative analysis 

of interactions on a class-level (rather than exposure level) basis.

LCA may also be an advantageous method for addressing chemical mixtures from a public 

health perspective, if the classes are indeed organized in a meaningful way. The results from 

our study identify specific population subsets that may be disproportionally exposed to 

chemicals associated with elevated oxidative stress levels in pregnancy. For example, the 

Carroll et al. Page 11

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“high exposure” group was detected as having elevated levels of oxidative stress, and, from 

the covariate assessment, we know that the “high exposure” group was largely made up of 

younger, non-white women with higher BMI and less education. In the context of pregnancy, 

identifying population subgroups or behavioral patterns that place individuals at higher risk 

of exposure could be useful for development of targeted counseling on strategies to reduce 

exposure. Furthermore, in the area of research on consumer product chemicals, identifying 

sources to avoid may have a greater public health impact than identifying one chemical from 

within the mixture that is the most powerful toxicant. The latter could lead to regrettable 

substitution, and also to underestimation of the impact of behavioral interventions. Future 

work could examine behavioral patterns (e.g., cosmetic and personal care product use) in 

relation to latent classes derived from exposure biomarker concentrations to identify points 

for intervention. This broader approach may be more powerful for developing interventions 

than examination of single pollutant associations with behaviors and demographics.

LCA is not without limitations. A longitudinal approach to LCA, known as latent transition 

analysis, would have enabled use of our repeated exposure biomarker concentrations and 

perhaps more precise groupings. However, this extension could complicate the interpretation 

of class assignments as well as subsequent behavioral modification recommendations. 

Another limitation of LCA is that it could result in identified classes that do not provide 

useful biological comparisons (e.g., no “low” or “high” exposure classes) or in classes that 

are not well-differentiated which will make interpretation of findings difficult. LCA requires 

the categorization of exposures, which may result in a loss of information for continuous 

variables and prohibits traditional testing of non-linear exposure-outcome associations or 

identification of specific doses associated with an effect. We considered alternatives to 

categorizing exposures as above vs. below median (e.g., categorizing the chemicals in 

quartiles or using continuous measures in latent profile analysis, data not shown); however, 

this further complicated exposure representation and severely limited interpretability of the 

results, which we saw as the primary advantage of using this method. Finally, because LCA 

is an unsupervised approach and does not incorporate information about the outcome in the 

estimation of classes, it is possible that subgroups at highest risk of elevated oxidative stress 

levels may not be identified due to a low prevalence. However, from a public health 

perspective, we felt the outcomes identified as associated with class membership, when 

determined from exposure profiles created without consideration of the outcome, may be the 

most meaningful.

In conclusion, LCA may be a useful mixtures method for identifying groups of individuals 

with predictive exposure profiles. Comparison of adverse outcomes between groups can 

inform our understanding of the cumulative impact of chemicals, and public health 

interventions for prevention may be facilitated by identification of demographic and 

behavioral characteristics of groups. Future work should examine replicability of LCA over 

time and identify exposure sources that are most strongly correlated with group assignment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Carroll et al. Page 12

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

This research was supported by the Intramural Research Program of the National Institute of Environmental Health 
Sciences (NIEHS), National Institute of Health (Z1AES103321). Additional funding was provided by NIEHS 
(R01ES018872 and R01ES029531).

References

1. Taylor KW, Joubert BR, Braun JM, Dilworth C, Gennings C, Hauser R, et al. Statistical Approaches 
for Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology: Lessons from 
an Innovative Workshop. Environ Health Perspect. 2016;124(12):A227–A9. [PubMed: 27905274] 

2. Braun JM, Gennings C, Hauser R, Webster TF. What Can Epidemiological Studies Tell Us about the 
Impact of Chemical Mixtures on Human Health? Environ Health Perspect. 2016;124(1):A6–9. 
[PubMed: 26720830] 

3. Agresti A Other Mixture Models for Categorical Data In: Balding DJ, Bloomfield P, Cressie NAC, 
Fisher NI, Johnstone IM, Kadane JB, et al., editors. Categorical Data Analysis. Hoboken, NJ: 
Wiley; 2002 p. 538–75.

4. Lazarevic N, Barnett AG, Sly PD, Knibbs LD. Statistical Methodology in Studies of Prenatal 
Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and 
New Alternatives. 2019;127(2):026001.

5. Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Karagas M, et al. Profiles and 
Predictors of Environmental Chemical Mixture Exposure among Pregnant Women: The Health 
Outcomes and Measures of the Environment Study. Environ Sci Technol. 2018;52(17):10104–13. 
[PubMed: 30088764] 

6. Zanobetti A, Austin E, Coull BA, Schwartz J, Koutrakis P. Health effects of multi-pollutant profiles. 
Environ Int. 2014;71:13–9. [PubMed: 24950160] 

7. Ferguson KK, Cantonwine DE, McElrath TF, Mukherjee B, Meeker JD. Repeated measures analysis 
of associations between urinary bisphenol-A concentrations and biomarkers of inflammation and 
oxidative stress in pregnancy. Reprod Toxicol. 2016;66:93–8. [PubMed: 27751756] 

8. Ferguson KK, McElrath TF, Chen YH, Mukherjee B, Meeker JD. Urinary phthalate metabolites and 
biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ Health 
Perspect. 2015;123(3):210–6. [PubMed: 25402001] 

9. McElrath TF, Lim KH, Pare E, Rich-Edwards J, Pucci D, Troisi R, et al. Longitudinal evaluation of 
predictive value for preeclampsia of circulating angiogenic factors through pregnancy. Am J Obstet 
Gynecol. 2012;207(5):407 e1–7. [PubMed: 22981320] 

10. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. 
JAMA Pediatr. 2014;168(1):61–7. [PubMed: 24247736] 

11. Ferguson KK, Meeker JD, Cantonwine DE, Mukherjee B, Pace GG, Weller D, et al. Environmental 
phenol associations with ultrasound and delivery measures of fetal growth. Environ Int. 
2018;112:243–50. [PubMed: 29294443] 

12. Ferguson KK, McElrath TF, Ko YA, Mukherjee B, Meeker JD. Variability in urinary phthalate 
metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. 
Environ Int. 2014;70:118–24. [PubMed: 24934852] 

13. Wei T, Simko V. R package “corrplot”: Visualization of a Correlation Matrix. 0.84 ed2017.

14. Linzer DA, Lewis JB. poLCA: An R Package for Polytomous Variable Latent Class Analysis. J 
Stat Softw. 2011;42(10):1–29.

15. McCutcheon AL. Latent class analysis. Thousand Oaks, California: Sage Publications; 1987.

16. Lin TH, Dayton CM. Model Selection Information Criteria for Non-Nested Latent Class Models. 
Journal of Educational and Behavioral Statistics. 2016;22(3):249–64.

17. Forster MR. Key Concepts in Model Selection: Performance and Generalizability. J Math Psychol. 
2000;44(1):205–31. [PubMed: 10733865] 

18. Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens 
in the U.S. population: NHANES 2005-2006. Environ Health Perspect. 2010;118(5):679–85. 
[PubMed: 20056562] 

Carroll et al. Page 13

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, et al. Urinary levels of seven 
phthalate metabolites in the U.S. population from the National Health and Nutrition Examination 
Survey (NHANES) 1999-2000. Environ Health Perspect. 2004;112(3):331–8. [PubMed: 
14998749] 

20. LR C, LK M, SM D. National Health and Nutrition Examination Survey: Sample design, 
2007-2010. Vital Health Stat [Internet]. 2013; 2(160). Available from: https://www.cdc.gov/nchs/
data/series/sr_02/sr02_160.pdf.

21. MacQueen J, editor Some methods for classification and analysis of multivariate observations 
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability; 1967: 
Oakland, CA, USA.

22. Brusco MJ, Shireman E, Steinley D. A comparison of latent class, K-means, and K-median 
methods for clustering dichotomous data. Psychol Methods. 2017;22(3):563–80. [PubMed: 
27607543] 

23. Leisch FJCs, analysis d. A toolbox for k-centroids cluster analysis. 2006;51(2):526–44.

24. Cohen JJE, measurement p. A coefficient of agreement for nominal scales. 1960;20(1):37–46.

25. Ferguson KK, Zhao L, Boss J, Mukherjee B, McElrath TF, Meeker JD. Urinary concentrations of 
Parabens, Triclosan, and other phenols in association with biomarkers of oxidative stress in 
pregnancy. Submitted 2019.

26. Hendryx M, Luo J. Latent class analysis to model multiple chemical exposures among children. 
Environ Res. 2018;160:115–20. [PubMed: 28972914] 

27. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Boca Raton, FL: 
Chapman and Hall/CRC; 1984.

28. Papathomas M, Molitor J, Richardson S, Riboli E, Vineis P. Examining the joint effect of multiple 
risk factors using exposure risk profiles: lung cancer in nonsmokers. Environ Health Perspect. 
2011;119(1):84–91. [PubMed: 20920953] 

29. Stafoggia M, Breitner S, Hampel R, Basagana X. Statistical Approaches to Address Multi-
Pollutant Mixtures and Multiple Exposures: the State of the Science. Curr Environ Health Rep. 
2017;4(4):481–90. [PubMed: 28988291] 

30. Zhao S, Yu Y, Yin D, He J, Liu N, Qu J, et al. Annual and diurnal variations of gaseous and 
particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data 
from China National Environmental Monitoring Center. Environ Int. 2016;86:92–106. [PubMed: 
26562560] 

31. White AJ, Keller JP, Zhao S, Kaufman JD, Sandler DP. Air Pollution, Clustering of Particulate 
Matter Components and Breast Cancer. Cancer Epidemiology Biomarkers & Prevention. 
2019;28(3):624.2–5.

32. Wang X, Mukherjee B, Batterman S, Harlow SD, Park SK. Urinary metals and metal mixtures in 
midlife women: The Study of Women’s Health Across the Nation (SWAN). International journal 
of hygiene and environmental health. 2019;222(5):778–89. [PubMed: 31103473] 

33. Snowden JM, Reid CE, Tager IB. Framing air pollution epidemiology in terms of population 
interventions, with applications to multipollutant modeling. Epidemiology. 2015;26(2):271–9. 
[PubMed: 25643106] 

Carroll et al. Page 14

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/nchs/data/series/sr_02/sr02_160.pdf
https://www.cdc.gov/nchs/data/series/sr_02/sr02_160.pdf


Figure 1. 
Pearson correlation heat map for average urinary phthalate metabolite and phenol 

concentrations measured during pregnancy in LIFECODES.

The abbreviations are defined as follows: DEHP - di-2-ethylhexyl phthalate, MCPP - 

mono(2-carboxypropyl) phthalate, MBzP - mono-benzyl phthalate, MBP - mono-n-butyl 

phthalate, MiBP - mono-isobutyl phthalate, MEP - mono-ethyl phthalate, 2,4-DCP - 2,4 - 

dichlorophenol, 2,5-DCP - 2,5 - dichlorophenol, TCS - triclosan, BP3 - benzophenone-3, 

BPA - bisphenol-A, BPB - butyl paraben, EPB - ethyl paraben, MPB - methyl paraben, PPB 

- propyl paraben.
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Figure 2. 
Proportion of term birth individuals with high (above median, dark gray) or low (below 

median, light gray) exposure biomarker concentrations within each of four latent classes 

identified by the unadjusted 4 class model.

The abbreviations are defined as follows: DEHP - di-2-ethylhexyl phthalate, MCPP - 

mono(2-carboxypropyl) phthalate, MBzP - mono-benzyl phthalate, MBP - mono-n-butyl 

phthalate, MiBP - mono-isobutyl phthalate, MEP - mono-ethyl phthalate, 2,4-DCP - 2,4 - 

dichlorophenol, 2,5-DCP - 2,5 - dichlorophenol, TCS - triclosan, BP3 - benzophenone-3, 

BPA - bisphenol-A, BPB - butyl paraben, EPB - ethyl paraben, MPB - methyl paraben, PPB 

- propyl paraben.
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Table 2.

Percent change (95% confidence interval) in log-transformed urinary oxidative stress biomarker averages in 

association with latent class assignment (weighted regression model).

Latent class assignment
a 8-OHdG 8-isoprostane

Low exposure Ref Ref

Low phthalates, high parabens 3 (−6, 14) 8 (−12, 34)

High phthalates, low parabens 16 (5, 28) 21 (−3, 51)

High exposure 19 (7, 31) 31 (5, 64)

Low exposure −3 (−12, 6) −14 (−22, −5)

Low phthalates, high parabens Ref Ref

High phthalates, low parabens 12 (2, 24) −11 (−19, −2)

High exposure 15 (4, 27) 2 (−7, 13)

Low exposure −14 (−22, −5) −17 (−34, 3)

Low phthalates, high parabens −11 (−19, −2) −10 (−28, 11)

High phthalates, low parabens Ref Ref

High exposure 2 (−7, 13) 8 (−13, 34)

a
The reference groups are varied for additional contrast comparison. Models adjusted for maternal age, race, education, and pre-pregnancy BMI.
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Table 3.

Percent change (95% confidence interval) in log-transformed urinary oxidative stress biomarker averages in 

association with k-means cluster assignment (weighted regression model).

K-means clusters
a 8-OHdG 8-isoprostane

Low exposure Ref Ref

Low phthalates, high parabens 1 (−7, 11) 26 (3, 53)

High phthalates, low parabens 6 (−4, 17) 52 (23, 89)

High exposure 19 (6, 34) 63 (26, 111)

Low exposure −1 (−10, 8) −5 (−14, 5)

Low phthalates, high parabens Ref Ref

High phthalates, low parabens 4 (−5, 14) −4 (−13, 6)

High exposure 17 (5, 31) 13 (1, 26)

Low exposure −5 (−14, 5) −34 (−47, −18)

Low phthalates, high parabens −4 (−13, 6) −17 (−33, 2)

High phthalates, low parabens Ref Ref

High exposure 13 (1, 26) 7 (−16, 36)

a
The reference groups are varied for additional contrast comparison. Models adjusted for maternal age, race, education, and pre-pregnancy BMI.
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